THE ONSET OF NUCLEATE BOILING IN FORCED
LIQUID FLOW
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We have derived the functions to calculate the difference between the wall temperature and
the temperature of liquid saturation, corresponding to the onset of nucleate boiling, and we
have determined the areas of applicability for these functions.

A characteristic feature of gas-separation heat exchangers operating in a liquid vaporization regime
is the small difference in temperatures between the heating surface and the vaporized liquid. Consequently,
a particularly urgent problem is the determination of the minimum temperature difference at which nucleate
boiling sets in, in particular, under conditions of forced convection in tubes.

According to the kinetic theory of liquids [1], the critical dimension for the formation of a new phase
is governed by the parameters of state for the liquid on the saturation line, in addition to its properties and
the degree of superheating.

The condition of mechanical equilibrium for the nucleus of the new phase (spherical in shape) is given
by the expression
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Using the relationship between temperature and pressure at the saturation line (the Clapeyron—Clausi-
us equation)
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in the case of low liquid superheating, the finite pressure difference can be replaced in (1) by the finite
temperature difference.

In accordance with (2) we find
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from which the critical radius of formation for the new phase, in the case of low values for (T, — Tg), can
be expressed as
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We assume that the critical formation of the new phase in the region in which there is a temperature
gradient in'a direction normal to the heating surface is capable of continuing its growth if the temperature
of the superheated liquid is given by T, when y, = 2Rcy. Otherwise, the bubble will not grow. In the forma-
tion of bubbles on a solid surface, instead of y, = 2R.,. reference [2] recommends the introduction of
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Institute of Chemical Engineering, Leningrad. Translated from Inzhenerno-Fizicheskii Zhurnal,
Vol. 6, No. 5, pp. 804-810, May, 1969. Original article submitted July 1, 1968.

© 1972 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York,
N. Y. 10011. AU rights reserved. This article cannot be reproduced for any purpose whatsoever without
permission of the publisher. A copy of this article is available from the publisher for $15.00.

554



To some extent, this makes provisiou for the change
7
_ in the height of formation as compared to a complete
-2 sphere, because of the proximity of the heating surface.
°—=J Having introduced (5) into (4), we find from the latter that
v
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and the derivative T, with respect to y,, thus determining
v the nature of the variation in the vapor temperature with-
in the bubble as a function of the apex coordinate, i.e., of
the bubble dimension
dT, 206CT, (' — ) _
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Fig.1l. Boundary for the temperature (deg) of
wall superheating, leading to the onset of nu- Now, requiring equality between dT/dy and the dT,
cleate boiling, as a function of flow velocity /dy, from the bubble crises condition (7), in accordance
(w, m/sec; P, MN/m?: 1) from the theoretical with the law governing change in the temperature profile
formula (24); 2) from the relationship for the in the boundary layer we find a possibility of associating
onset of boiling in a subcooled liquid [6]; 3) the bubble crises condition with the heat flow through the
experimental data from [7]. wall to the moving liquid. All subsequent considerations
will be based on the dimensionless universal Karman co-
ordinates.
Let us introduce the notation
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With consideration of (8) we find that (7) assumes the form
g :M(LMQ_L ©)
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The quantity 7, in (9) can be represented in terms of the pressure gradient (dP/dx) for a liquid flow

by a complete cross section or in terms of the thickness of the liquid film freely running off a vertical sur-
face.

In the first case,

b ()

where R is the tube radius.

In the second case,
To = (uPg?P 572,

The magnitude of the pressure gradient dP/dx in (10) is determined on the saturation line for a one-
phase liquid as a function of the flow regime. In the region of turbulent regimes the pressure gradient
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can be calculated from the formula

dP
dx

o (11)
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Substituting (11) into the expression for the dynamic velocity u* = v7,/p,, we obtain

W=7z l/ < (12

For turbulent motion in a circular tube, according to the recommendations of [3], the resistance factor
¢ can be calculated from the formula for smooth tubes:

055 T
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and with consideration of the above Eq. (12) assumes the form
0.195 E
8

u*

The quantity 5% in (10a) is the dimensionless thickness of the run-off film, calculated by the Portalski
method [4].

The next step in the solution of the problem calls for knowledge of the velocity profile in the liquid
boundary layer. For this we will use the universal Karman—Nikuradse velocity profile in a three-layer
model of the flow, assuming the tangential stresses in the boundary layer to be constant. The laminar and
buffer transition regions may be of practical interest in view of the smallness of the critical bubble dimen-
sions, which in the coordinates adopted here will be determined by the range of variation in y* in the limits

0<y"=30.

In the laminar region 0 < y* <5
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In the buffer region
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Equating the values of dt*/dy™ from (9) and (15) or (17), respectively, we will find for the laminar re-

gion that
To v 1/2
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Ty T 1ol T This result is valid if the value of yi =5, When y; > 5,
N \\ v\\ N I Tob i.e., for the buffer region, the equation is brought to the form
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Fig. 2. Comparls_o? of t{le boundary 25C l/jg_( _ l) (1—Pr)
of the onset of boiling (Tyop as a 0o _ (19)
function of (24) with the data from ruPr T, 1
[5] for a pressure of P = 14.0 MN Ho Ts
/m? (w, m/sec).
The solution satisfying the physical sense of the problem (y;ir > 0) has the form
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Let us determine which external conditions lead to the critical state for vapor bubbles with a dimen-
sion of y; from (18) or (20), depending on the absolute value.

Substituting the value of y; from (18) into (6) we find the temperature inside the bubble:

1
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We will use (14) when y* = yg according to (19) to eliminate t; from (22). This yields
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With simple transformations, from this we determine the value of the temperature head, correspond-
ing to the onset of nucleate boiling in the forced flow of a liquid:

8T,C Pr 1/19_ (U_",—l)
(TO _Ts) = Lo 2 .
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(23)

We can present (23) in dimensionless form, i.e.,

(I&_ )zgc(i",.—l)Re* Pr, (24)
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The complex o/rpo in the dynamic Reynolds number is expressed in units of meters and is taken as a
characteristic dimension.

where

Returning to (18) for the dimensionless coordinate of the apex of the critical bubble, we eliminate the
quantity (T) — Tg) from that equation on the basis of (22). This yields the condition
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1 (25)
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which demonstrates that the critical bubble is entirely within the limits of the laminar boundary layer.
Analyzing the various heat carriers from this standpoint, we can see that most of them satisfy this condi-
tion. An exception are the liquid metals for which the Pr numbers on saturation are of the order of 1072
For liquid-metal heat carriers it is therefore of interest to examine the case in which the apex of the vapor
formation is in the buffer region.

Substituting the value of y; from (20) into (16) and (6), and eliminating the value of t;{, after some
simple transformations we obtain :
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The solution of the transcendental equation (26) for (To/Ts — 1) determines the minimum temperature
head at which nucleate boiling begins under conditions of forced liquid flow (Pr < 0.1),

The resulting relationship (24) for the minimum temperature difference corresponding to the onset of
nucleate boiling in a liquid flow was compared with experimental data {5, 7] and the empirical relationships
of [6]. The results are shown in Figs.1 and 2.

It follows from Fig. 2 that in a region of high pressures the curve calculated from (24) corresponds to
the onset of deviation on the part of the wall temperature from the convection heat-transfer relationships
for various degrees of liquid subcooling to saturation.

With an error of less than 20%, the experimental data of [7] were grouped near the theoretical curve
corresponding to pressure of 1.5-10° N/m? and this curve is shown in Fig. 1. The same figure also shows
the curves calculated from the empirical relationships of [6] for a subcooling of 20°. In the region of high
pressures and low velocities for the liquid we find satisfactory agreement for the relationships under con-
sideration, Tt is characteristic that the divergence of the result is not systematic in nature and may be
partially explained by the fact that in the processing of the experimental data the authors of [6] employed
the total temperature head between the wall and the core of the flow, thus distorting the effect of pressure
and velocity.

NOTATION

is the pressure in the system;

is the surface tension coefficient;

is the radius;

are temperatures;

is the specific volume of the medium;

is the heat of vapor formation;

is the coordinate in the direction normal to the surface;
is the diameter;

is the boundary wetting angle;

is the instantaneous value of the liquid velocity;
is the liquid density;

is the tangential stress;

is the heat capacity;

is the heat flux density;

is the dynamic viscosity;

=

N € g R < T Ma g

=L 0
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is the coordinate along the liquid flow;

is the acceleration of free fall;

is the thickness of the liquid film running off freely;
is an increment in magnitude;

is the frictional resistance factor.

Symbols

"

© W~ o WU W

denotes quantities pertaining to the vapor phase;

denotes quantities pertaining to the liquid phase;

shows the value of the quantity at the apex of a bubble of critical radius;
shows the value on saturation;

denotes quantities characterizing the critical state;

denotes values at the wall temperature;

denotes quantities expressed in dimensionless Karman coordinates;
denotes dynamic velocity and quantities expressed in terms of that velocity;
denotes quantities characterizing the onset of boiling.
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